Date of Issue: Jan. 08, 2018 Report No.: E442505-02

CE EMC TEST REPORT

FOR

Storage Server

Model: NS-2040, NS-20x0, NVS-20x0, NVS-200x, NS-2XX0, NVS-2XX0, NVR-B2XX(x=0~16)

Trade Name: NUUO

Issued to

NUUO Inc. 10F., No.285, Sec. 2, Wenhua Rd. Banqiao Dist., New Taipei City 220, Taiwan (R.O.C.)

Issued by

Global Certification Corp.
No.146, Sec. 2, Xiangzhang Rd., Xizhi Dist., New Taipei City 221,
Taiwan (R.O.C.)

Note: This test refers exclusively to the test presented test model and sample. This report shall not be reproduced except in full, without the written approval of Global Certification Corporation. This document may be altered or revised by Global Certification Corporation. Personnel only, and shall be noted in the revision section of the document.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
1.	442505	442505	May. 14, 2014	Original Report	N/A
2.	472407	442505-01	Jul. 24, 2014	Copy Report	N/A
3.	7N0303	442505-02	Jan. 08, 2018	Update Standard To EN55032	Judy

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

TAB	BLE OF CONTENTS	3
1.	GENERAL INFORMATION	6
1.1	DESCRIPTION OF THE TESTED SAMPLES	7
1.2		
1.3		
1.4		9
1.5		10
2.	INSTRUMENT AND CALIBRATION	11
2.1		11
2.2		· []
2.3		
2.4		
3.	CONDUCTED EMISSION MEASUREMENT	
3.1		
3.2		
3.3		
3.4	TEST SPECIFICATION	
3.5		
3.6		
3.7		
3.8 3.9		
4.	RADIATED EMISSION MEASUREMENT	
4.1		
4.2		
4.3		
4.4		
4.5		
4.6		
5.	CONDUCTED DIFFERENTIAL VOLTAGE EMISSIONS MEASUREMENT	21
5.1	TEST SETUP	21
5.2		
5.3	TEST PROCEDURE	23
5.4		
5.5		
5.6	RESULT	24
6.	HARMONIC CURRENT EMISSIONS MEASUREMENT	25
6.1	TEST SETUP	25
6.2		
6.3	TEST PROCEDURE	25
6.4		
6.5		
6.6	RESULT	25
7.	VOLTAGE FLUCTUATIONS	26
7.1	TEST SETUP	26
7.1		
7.3		
7.4		
7.5		26

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

7.6	RESULT	2e
8. E	LECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)	27
8.1	TEST SPECIFICATION	27
8.2	TEST SETUP	
8.3	TEST LEVEL	
8.4	TEST RESULT	28
9. R	ADIATED SUSCEPTIBILITY MEASUREMENT (RS)	30
9.1	TEST SETUP	
9.2	TEST SPECIFICATION	
9.3	TEST LEVEL	
9.4	TEST PROCEDURE	
9.5	TEST RESULT	
10.	ELECTRICAL FAST TRANSIENT/BURST (EFT)	
10.1		
10.2		
10.3		
10.4		
10.5		
11.	SURGE	
11.1		
11.2		
11.3		
11.4		
11.5		
12.	IMMUNITY TEST TO CS CONDUCTED DISTURBANCE (CS)	
12.1		
12.2		
12.3 12.4		
12.4		
13.	POWER FREQUENCY MAGNETIC FIELD (MAGNETIC)	
13.1		
13.2	TEST SPECIFICATION	38
13.3		
13.4 13.5		
14.	VOLTAGE DIPS AND INTERRUPTION MEASUREMENT	
14.1		
14.2		
14.3		
14.4 14.5		
15.	PERFORMANCE CRITERIA	43
16.	EMC MODIFICATION & ESTIMATED MEASUREMENT UNCERTAINTY	4 4
16.1		
16.1		
10.2	ESTIMATED MEASUREMENT UNCERTAINTY	44

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

APPENDIX 2
TEST DATA
APPENDIX 3
PHOTOS OF EUT

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

1. GENERAL INFORMATION

Applicant : NUUO Inc.

Address : 10F., No.285, Sec. 2, Wenhua Rd. Banqiao Dist., New Taipei City 220,

Taiwan (R.O.C.)

Manufacturer : NUUO Inc.

Address : 10F., No.285, Sec. 2, Wenhua Rd. Banqiao Dist., New Taipei City 220,

Taiwan (R.O.C.)

EUT : Storage Server

Model No. : NS-2040, NS-20x0, NVS-20x0, NVS-200x, NS-2XX0, NVS-2XX0,

NVR-B2XX($x=0\sim16$)

Trade Name : NUUO

Model Differences : The major electrical and mechanical constructions of series models are

identical to the basic model, except different Brand and software option. The model, NS-2040 is the testing sample, and the final test data are shown on

this test report.

Test Standards:

EMI : Class B EMS :

EN 55032: 2015 EN 55024:2010

EN 61000-3-2:2014 EN 61000-4-2:2009

EN 61000-3-3:2013 EN 61000-4-3:2006+A2:2010

EN 61000-4-4: 2012 EN 61000-4-5: 2014 EN 61000-4-6: 2014 EN 61000-4-8: 2010 EN 61000-4-11: 2004

According to the applicant's declaration this EUT is a Class B product.

The above equipment was tested by Global Certification Corp. For compliance with the requirements set forth in the EUROPEAN COUNCIL Directive 2014/30/EU and the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested.

The test was carried out on Jan. 02, 2018 and this test report shall not be reproducing in part without written approval of Global Certification Corp.

Tested By: Approved by:

Jan. 08, 2018

Date Eason Hsu, Engineer

Jan. 08, 2018

Re-issued Date

Adam Chou, Manager

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

1.1 DESCRIPTION OF THE TESTED SAMPLES

EUT

EUT Type : ☑Normal Type □Engineering Type

EUT Name : Storage Server

Model No. : NS-2040

EUT Power Type : \square AC Power

□ DC Power

□ DCV from PC

☑ DCV from Adaptor

EUT Power Rating : I/P: 100-240Vac, 50/60Hz, 1.8A

O/P: 12V, 5.0A, 60W MAX

The frequency of the EUT

Highest Operating Frequency : 910MHz

EUT Received Date : Apr. 25, 2014 EMC Test Completed Date : May. 14, 2014

Date of Retest : Nov. 03, 2017~Jan. 02, 2018

1.2 I/O PORT OF THE EUT

I/O port type	Q'ty	Tested with
HDMI Port	1	1
VGA Port	1	1
RS232 Port	1	1
eSATA Port	1	1
USB 2.0 Port	5	5
LAN Port	2	2
Audio IN Port	1	1
Audio OUT Port	1	1
Line IN Port	1	1

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

1.3 TEST METHODOLOGY

EUT SYSTEM OPERATION

- 1. The EUT was configured according to EN55032 Class B
- 2. All I/O ports are connected to the appropriate peripherals.
- 3. Photos of test configuration please refer to appendix 1.
- 4. Perform the EMC testing procedures, and measure the maximum emission noise.
- 5. The combined texts of the International Standard CISPR 32:2015 with agreed common modifications were approved by CENELEC as EN 55032:2015
- 6. EUT Operating Mode: A Full screen consisting of repeated "H" or "Color bar" patterns should be continuously scrolled down under EMCTEST.

DECISION OF FINAL TEST MODE

The EUT was pre-tested under operating condition.

The power rating of EUT is designed with AC power of rating 100-240Vac, 50/60Hz. For radiated and conducted emission evaluation, $230\text{Vac}(\pm 10\%)/50\text{Hz}$ & $110\text{Vac}(\pm 10\%)/60\text{Hz}$, had been covered during the pre-test. The worst data was recorded in the applied test report.

Harmonic, Flick and Immunity testing power were 230Vac/50Hz.

Mode: Recording

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

1.4 DESCRIPTION OF THE SUPPORT EQUIPMENT

Setup Diagram

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

Support Equipment

Peripherals Devices:

	Peripherals Devices: OUTSIDE SUPPORT EQUIPMENT									
	FCC ID/									
No.	Equipment	Model	Serial No.	BSMI ID	Trade name	Data Cable	Power Cord			
1.	MONITOR	288P6L	AU5A142	R33037	PHILIPS	Shielded	Unshielded			
		200102	1009987		11112112	1.8m	1.8m			
			CN-OGTT			01:11.1	TT 1:11 1			
2.	MONITOR	P2415Qb	PW-74261 -SCN-06G	R43002	Dell	Shielded 1.8m	Unshielded 1.8m			
			-SCN-00G L			1.8111	1.8111			
	USB3.0				TRANSCE					
3.	storage	TS8GJF700	N/A	D33193	ND	N/A	N/A			
	USB3.0	#G0.G.#1 7 0.0	27/4	D22102	TRANSCE	27/4	27/4			
4.	storage	TS8GJF700	N/A	D33193	ND	N/A	N/A			
	USB3.0	DTSE9G2/1	6HLTD-F							
5.	storage	6GBFR	87TFP-KX	N/A	Kingston	N/A	N/A			
	3,01,00	002111	096							
	MOLICE	(2270	622783291	D25101	. 1 .	Unshielded	NI/A			
6.	MOUSE	62278	607150580	R35181	steelseries	1.8m / USB	N/A			
			6 ATC10080			Unshielded				
7.	KEY BOARD	PK1100	11457	R41108	ASUS	1.3m / USB	N/A			
						Unshielded				
8.	EAR PHONE	E220	N/A	N/A	DeeJay	2m	N/A			
9.	PMO	NS-1040	N/A	N/A	N/A	N/A	N/A			
10.	Vritual Cam	N/A	N/A	N/A	NUUO	N/A	N/A			
11.	HDD	N/A	N/A	N/A	Akits	N/A	N/A			
12.	Camera	N/A	N/A	N/A	N/A	Unshielded	N/A			
12.	Camera					15m	IV/A			
		EUT	ACCESSO		PONEBNTS					
No.	Equipment	Model	Serial No.	FCC ID/ BSMI ID	Trade name	Data Cable	Power Cord			
1.	PCB 1	94V-0 1238	AN801123 80016	N/A	N/A	N/A	N/A			
	DCD 2	94V-0		NT/A	NT/A	NT/A	NT/A			
2.	PCB 2	E78017	N/A	N/A	N/A	N/A	N/A			
3.	PCB 3	94V-0 1340	N/A	N/A	N/A	N/A	N/A			
4.	ADAPTER	PA1060-120 T1A500	N/A	N/A	Powertron Electronic	N/A	N/A			
5.	IR	N/A	N/A	N/A	N/A	Unshielded	N/A			
<i>J</i> .	IIX		1 1/ /1	11/11	1 1/ /1	1.8m	1 1/71			
6.	HDD 1	ST4000NC0	Z3011J82	D33027	Seagate	N/A	N/A			
		00			٤					

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

7.	HDD 2	ST4000NC0 01	Z30127F8	D33027	seagate	N/A	N/A
----	-------	-----------------	----------	--------	---------	-----	-----

Note: All the above equipment/cable were placed in worse case position to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirement and conditions for the intended use.

1.5 FEATURES OF EUT

Please refer to user manual or product specification.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

2. INSTRUMENT AND CALIBRATION

2.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

2.2 TEST AND MEASUREMENT EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1-1, CISPR 16-1-4, CISPR 16-2-3 and other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

TABLE 1 LIST OF TEST AND MEASUREMENT EQUIPMENT

Conducted Emission Measurement (Test Site ID: GCC_CE-01)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Due Date	Note		
EMC Test Receiver	R&S	ESCI	100438	Dec. 08, 2018			
LISN #1	SCHWARZBECK	NNLK8121	550213	Aug. 19, 2018	For EUT		
LISN #2	EMCO	Feb-25	9001-1400	N/A	For Support Unit		
RF Cable	Huber+Suhner	RG223/U	Cable-001	Dec.17, 2018			
Impedance Stabilization	Teseq GmbH	ISNT800	23334	Nov. 08, 2018			
Absorbing Clamp	COM-POWER	AB-050	421915	Aug. 17,2019			
RF Cable	Huber+Suhner	5D-FB	CABLE-007	Aug. 16,2019			
Test Software	AUDIX	E3	6.2008-10-2C	N/A			
3m/10m Open Area Test Site Radiated Emission Measurement (Test Site ID: GCC_RE-01)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Due Date	Note		
EMC Test Receiver	R&S	FSV40	101088	Sep. 28, 2018			
Bilog Antenna	SUNOL	JB1	A052104	Oct. 25, 2018			
RF Cable	JYE BAO	RG214/U	Cable-002	Sep. 27, 2018			
Pre-Amplifier	WIRELESS	FPA-6592G	60021	Oct. 20, 2018			
Test Software	AUDIX	E3	6.2009-5-7a(n)gcc	N/A			
966_3m EMC Char	mber Radiated Emi	ssion Measurement	(Test Site ID: GC	C_RE-02 and GC	CC_RE-02G)		
Instrument	Manufacturer	Model No.	Serial No.	Calibration Due Date	Note		
EMC Test Receiver	R&S	FSV40	101088	Sep. 28, 2018			
Bilog Antenna	SUNOL	JB1	A052204	Feb. 21, 2018			
Pre-Amplifier	WIRELESS	FPA-6592G	60028	Sep. 28, 2018			
RF Cable_NSA_Rx	HUBER + UHNER	RG213/U	Cable-004	Sep. 27, 2018			
Double Ridged Guide HORN ANTENNA	EST.LINDGREN	3117	119028	Apr.18, 2019			
SMA_Cable	HUBER SUHNER	EMC104-SM-SM-10	170238	Mar. 05, 2018			

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

	Г			T					
		00							
RF Cable (sVSWR_TX)	Huber Suhenr	SUCOFLEX 104	293864/4	Mar. 05, 2018					
Microwave Preamplifier	EMCINSTRUMENT	EMC051845	980059	Apr. 17, 2019					
TEST SOFTWARE	AUDIX	E3	6.101222	N/A					
Power Harm	Power Harmonic and Voltage Fluctuations Measurement (Test Site ID: GCC HF-01)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Due Date	Note				
5KV AC Power Source	SCHAFFNER	NSG1007	55869	Sep. 20, 2018					
Signal Conditioning	SCHAFFNER	CCN1000-1	72281	Sep. 20, 2018					
		EMS							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Due Date	Note				
	EN6100	0-4-2 (Test Site ID:	GCC EMS-01)						
ESD Generator	TESEQ	NSG437	313	Sep. 07, 2018					
	EN6100	0-4-3 (Test Site ID:	GCC EMS-02)						
RF Power Meter	BOONTON	4231A	110602	Jul. 18, 2018					
Signal Generator	R&S	SM300	101722	Jul. 13, 2018					
Electric Field probe	ETS-LINDGREN	HI-6005	29837	N/A					
Power Amplifier	SCHAFFNER	CBA9413B	4039	N/A					
Power Amplifier	TESEQ	CBA3G-050	T43752	N/A					
Switch Network	TESEQ	RFB2000	26336	N/A					
RF Power sensor	BOONTON	51011-EMC	33109	Jul. 18, 2018					
EN61000-	4-4/ EN61000-4-5/ E	N61000-4-8/ EN610	00-4-11 (Test Site	EID: GCC_EMS-	03)				
EMC Immunity Test system	EMC PARTNERAG	TRA200IN6	739	Sep. 07, 2018					
Conducted disturbances generator	FRANKONIA	CIT10/75	102D3233	Sep. 25, 2018					
Induction Coil Interface	SCHAFFNER	2141	6019	Jul. 01, 2018					
TRIAXIAL ELF Magnetic Field Meter	SYPRIS	4090	4090070316	Jun. 02, 2018					
ANTENNA	EMC PARTNER AG	MF1000	117	Sep. 07, 2018					
	EN61000	0-4-6 (Test Site ID:	GCC_EMS-04)						
CDN	SCHAFFNER	CDN M316	20653	Nov. 09, 2018					
CDN	SCHAFFNER	CDN M216	19286	Nov. 09, 2018					
CDN	FRANKONIA	RJ45	60050134	Nov. 09, 2018					
6dB Attenuator	FRANKONIA	75-A-FFN-06	102D3233	N/A					
EM Injection Clamp	FCC	F-203I-23MM	471	Sep. 21, 2019					
Conducted disturbances generator	FRANKONIA	CIT10/75	102D3233	Sep. 25, 2018					
\•\/ = +++				·					

^{*} Calibration interval of instruments listed above is one year

2.3 TEST PERFORMED

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver which resolution bandwidth is set at 9 KHz.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

Radiated emissions were invested over the frequency range from 30MHz to 1000MHz using a receiver which resolution bandwidth is set at 120KHz. Radiated measurement was performed at distance that from an antenna to EUT is 10 meters.

2.4 APPENDIX

Appendix A: Measurement Procedure for Main Power Port Conducted Emissions

The measurements are performed in a Global lab's room; The EUT was placed on non-conductive 1.0m x 1.5m table, which is 0.8 meter above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs was filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord and hot and neutral, was measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

Appendix B: Test Procedure for Radiated Emissions

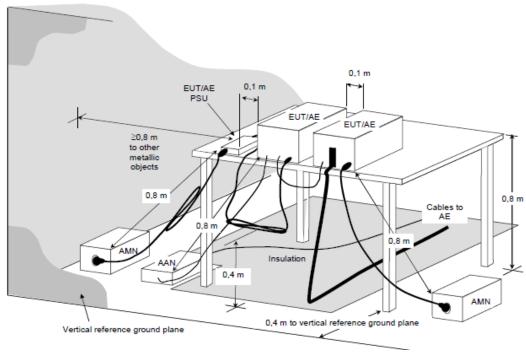
Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°. The antenna height is 1 meter. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

Measurements on the Open Site or Chamber

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipments are set up on the turntable. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.


For the initial measurements, the receiving antenna is varied from 1 to 4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120 KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For the frequency range is above 1 GHz, the EUT was positioned such that distance from antenna to the EUT is 3 meters. The bandwidth set on the field strength is 1 MHz when the frequency range is above 1GHz.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

3. CONDUCTED EMISSION MEASUREMENT

3.1 TEST SETUP

3.2 LIMIT

Ema guan ay man ga	CLASS A		CLA		
Frequency range (MHz)	QP	Average	QP	Average	Receiver RBW
(IVIIIZ)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	
0.15-0.5	79 dBuV	66 dBuV	66 - 56 dBuV	56 - 46 dBuV	9KHz
0.5-5.0	73 dBuV	60 dBuV	56 dBuV	46 dBuV	9KHz
5.0-30.0	73 dBuV	60 dBuV	60 dBuV	50 dBuV	9KHz

Remark: In the above table, the tighter limit applies at the band edges.

3.3 TEST PROCEDURE

The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). It provides a 50 ohm / 50 μ H coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm / 50 μ H coupling impedance with 50 ohm termination. (Please refer to the block diagram of the test setup and photograph.)

Both sides of AC line are checked for the maximum conducted emission interference. In order to find the maximum emissions, the relating positions of equipment and all of the interference cables must be changed according to EN55032 regulations: The measurement procedure on conducted emission interference.

The resolution bandwidth of the field strength meter is set at 9 KHz.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

3.4 TEST SPECIFICATION

According to EN55032 Class B (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

3.5 TEST DATA:

Please refer to appendix 2.

3.6 RESULT:

PASS

3.7 LIMIT OF CONDUCTED COMMON MODE DISTURBANCE AT TELECOMMUNICATION PORTS:

Frequency Range	Class A		Clas	D	
MHz	Quasi Peak (dBuV)	Average	Quasi Peak (dBuV)	Average	Receiver RBW
0.15 ~ 0.5	97 - 87	84 – 74	84 – 74	74 – 64	9KHz
0.5 ~ 30	87	74	74	64	9KHz

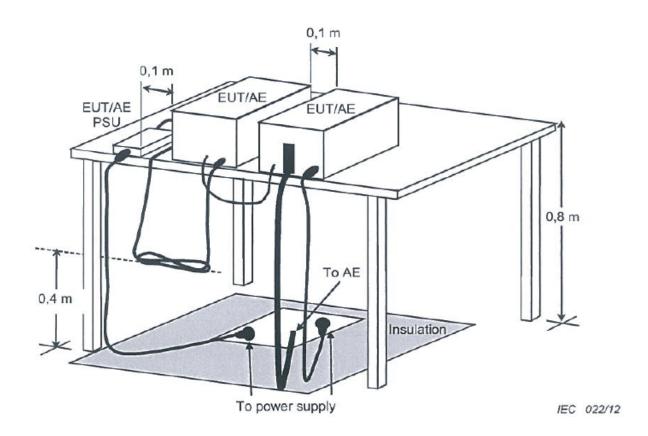
The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

Remark:

- 1. Measuring highest data rate mode: ①LAN1 Link 1G ② LAN2 Link 1G
- 3. The Worst Mode: ② LAN2 Link 1G
- 4. Deviations from the test standards and rules: None.
- 5. "*", means this data is peak measuring as peak value is under Q.P. Limit or Average Limit 3dB margin.

3.8 TEST DATA:

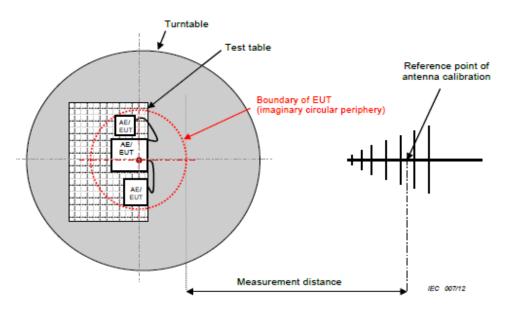
Please refer to appendix 2.

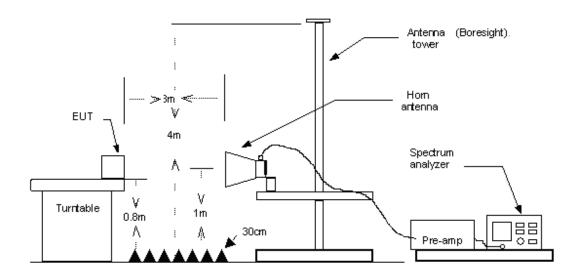

3.9 RESULT:

PASS

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

4. RADIATED EMISSION MEASUREMENT


4.1 TEST SETUP



Date of Issue: Jan. 08, 2018 Report No.: E442505-02

Below 1GHz

Above 1GHz

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

4.2 LIMIT

Frequency	Class A		Clas	D . DDM	
MHz	Distance (Meter)	Limit dBµV/m	Distance (Meter)	Limit dBµV/m	Receiver RBW
30 ~ 230	10	40	10	30	120KHz
30 ~ 230	3	50	3	40	120KHZ
220 1000	10	47	10	37	120KHz
230 ~ 1000	3	57	3	47	12UKHZ

Frequency	Class A		Class					
range GHz	Average limit dB(μV/m)	Peak limit dB(μV/m)	Average limit dB(µV/m)	Peak limit dB(μV/m)	Receiver RBW			
1 to 3	56	76	50	70	1MHz			
3 to 6	60	80	54	74	1MHz			
N	NOTE The lower limit applies at the transition frequency.							

Remark: In the above table, the tighter limit applies at the band edges

Radiated emissions from FM receivers

	Measurement		Class B limit dB(µV/m)	
Frequency			Fundamental	Harmonics
range MHz	Bistance Beteetortype		OATS / SAC (see Table A.1)	OATS / SAC (see Table A.1)
30 – 230			50	42
230 - 300	10			42
300 – 1000		Quasi peak/		46
30 - 230		120kHz		52
230 – 300	3		60	52
300 – 1000				56

These relaxed limits apply only to emissions at the fundamental and harmonic frequencies of the local oscillator. Signals at all other frequencies shall be compliant with the limits given in 7.3.1 Class B Limit

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

4.3 TEST PROCEDURE

The EUT and its simulators are placed on turn table, non-conductive and wooden table, which is 0.8 meter above ground. The turn table rotates 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that distance from antenna to the EUT is 10 meters(OATS) or 3 meters(SAC). For the frequency range is above 1 GHz, the EUT was positioned such that distance from antenna to the EUT is 3 meters.

The antenna is moved up and down between 1 meter and 4 meters to receive the maximum emission level.

Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission, all of the interference cables must be manipulated according to EN55032 regulations: the test procedure of the radiated emission measurement.

The bandwidth set on the field strength is 120 KHz when the frequency range is below 1GHz. The bandwidth set on the field strength is 1 MHz when the frequency range is above 1GHz.

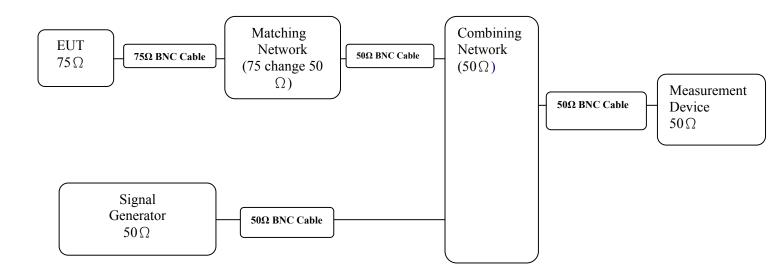
4.4 TEST SPECIFICATION

According to EN55032 Class B

(Please refer to Page 4 for dated references which are related to the standard as mentioned above)

4.5 TEST DATA:

Please refer to appendix 2.


4.6 RESULT:

PASS

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

5. CONDUCTED DIFFERENTIAL VOLTAGE EMISSIONS MEASUREMENT

5.1 TEST SETUP

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

5.2 LIMIT

Applicable to

- 1. TV broadcast receiver tuner ports with an accessible connector
- 2. RF modulator output ports
- 3. FM broadcast receiver tuner ports with an accessible connector

O. I WI DIOGGGGGGT ICCCI	o. I w broadcast receiver tuner ports with an accessible connector					
	Class B limits dB(μV) 75 Ω					
Frequency range MHz	other	Local Oscillator Fundamental	Local Oscillator Harmonics	Applicability		
30 – 950	46	46	46	Soc a)		
950 – 2 150	46	54	54	See a)		
950 – 2 150	46	54	54	See b)		
30 – 300	46	E 4	50	Coo o)		
300 – 1 000	46	54	52	See c)		
30 – 300	46	66	59	Coo d)		
300 – 1 000	40	00	52	See d)		
30 – 950	46	76	46	Soo o)		
950 – 2 150	40	n/a	54	See e)		

- a) Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.
- b) Tuner units (not the LNB) for satellite signal reception.
- c) Frequency modulation audio receivers and PC tuner cards.
- d) Frequency modulation car radios.
- e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.

Testing is required at only one EUT supply voltage and frequency.

The term 'other' refers to all emissions other than the fundamental and the harmonics of the local oscillator.

The test shall be performed with the device operating at each reception channel.

The test shall cover the entire frequency range.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

5.3 TEST PROCEDURE

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. The EUT was place on a wooden table with a height of 0.8 meters was used that was placed on the ground plane.
- Support equipment, if needed, was placed as per EN 55032.
- All I/O cables were positioned to simulate typical usage as per EN 55032.
- The EUT received AC power source, from the outlet socket. All support equipment received power
 was from another socket.
- Added a 75←→50Ω matching network, between EUT and EMI test receiver to get impedance match condition during the test.
- The output level of the auxiliary signal generator shall be set to give the value of 60 dB (μ V) for FM receiver or 70 dB (μ V) for TV and VCR to the input of the frequency-modulation or television receiver (or video recorder) respectively, on a 75 Ω impedance. An additional amplifier should be insert at the generator output, if necessary.
- The output level of the auxiliary signal generator shall be a standard TV color bar Move signal for TV receivers and video recorders with sound carrier that defined in Table A12 of EN 55032 .An additional amplifier should be insert at the generator output, if necessary.
- The results shall be expressed in the terms of the substitution voltage in decibels (μ V), as supplied by the standard signal generator. The specified source impedance of the receiver shall be stated with the results.
- When measurements are made at the antenna terminals of the EUT, an auxiliary signal generator shall be used to feed the equipment under test input with a standard test signal (see Table A.12 of CISPR 32/ EN 55032) at the receiver tuning frequency (30MHz to 2150MHz).
- The test mode(s) described in Item 4.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.

Procedure of Final Test

- EUT and support equipment were set up on the table as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 2150MHz. recorded the value, the local frequency, amplitude, were recorded in which correction factors were used to calculate the emission level and compare reading to the applicable limit, and only Q.P reading will record in this report.
- Recorded at least the six highest emissions. Emission frequencies, amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

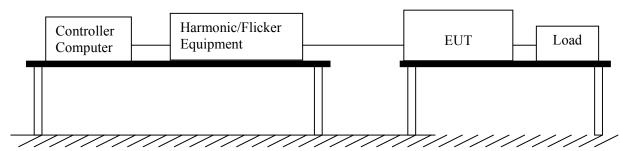
Date of Issue: Jan. 08, 2018 Report No.: E442505-02

5.4 TEST SPECIFICATION

According to EN55032 Class B (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

5.5 TEST DATA:

N/A


5.6 RESULT:

No applicable, because the EUT doesn't have TV, FM and RF modulator I/O ports.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

6. HARMONIC CURRENT EMISSIONS MEASUREMENT

6.1 TEST SETUP

6.2 LIMIT OF HARMONIC CURRENT

Limit of Harmonic Currents

Harmonic Order	Maximum Permissible Harmonic Current	Harmonic Order	Maximum Permissible Harmonic Current (Ampere)	
01441	(Ampere)	01441		
Odd Harmonic		Even Harmonic		
3	2.30	2	1.08	
5	1.14	4	0.43	
7	0.77	6	0.30	
9	0.40	$8 \le n \le 40$	0.23 x 8/n	
11	0.33			
13	0.21			
$15 \le n \le 39$	0.15 x 15/n			

6.3 TEST PROCEDURE

The EUT is supplied in series with power analyzer from a power source has the same normal voltage and frequency as the rated supply voltage and the equipment under test.

6.4 TEST SPECIFICATION

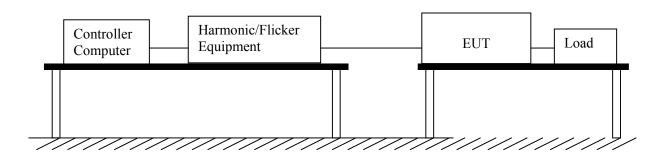
According to EN61000-3-2

(Please refer to Page 4 for dated references which are related to the standard as mentioned above)

6.5 TEST DATA:

Please refer to appendix 2.

6.6 RESULT:


PASS

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

7. VOLTAGE FLUCTUATIONS

7.1 TEST SETUP

7.2 VOLTAGE FLUCTUATIONS TEST

Port:	AC mains
Basic Standard:	EN61000-3-3
Test Procedure	Refer to paragraph 6.3
Observation period:	For Pst 10min
Observation period.	For Plt 2 hours

7.3 TEST PROCEDURE

The EUT is supplied in series with reference impedance from a power source with the voltage and frequency as the nominal supply voltage and frequency of the EUT.

7.4 TEST SPECIFICATION

EN61000-3-3

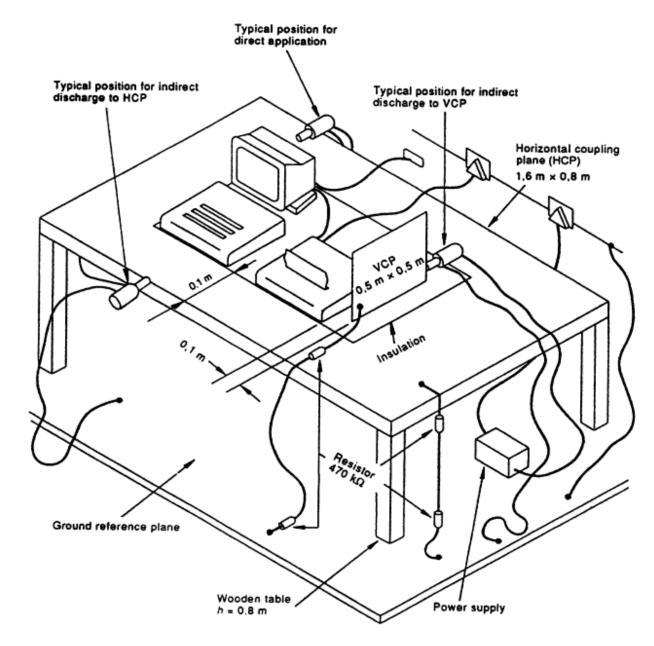
(Please refer to Page 4 for dated references which are related to the standard as mentioned above)

7.5 TEST DATA:

Please refer to appendix 2.

7.6 RESULT:

PASS


Date of Issue: Jan. 08, 2018 Report No.: E442505-02

8. ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

8.1 TEST SPECIFICATION

Test is carried out according to EN61000-4-2, and the Test Level is subject to Table 1 of EN 55024. (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

8.2 TEST SETUP

8.3 TEST LEVEL

Item	Test Specification	Unit	Performance Criteria
------	---------------------------	------	-------------------------

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

	±2, 4, 8 (Air Discharge)	KV (Chara Valtara)	В
Electrostatic Discharge	±2,4 (Contact Discharge)	(Charge Voltage)	
Time between test	<u>1</u>	sec	

Number of test: 10 Discharges / Test point / Polarity / Level

Particular requirements: at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points.

When the measurement was taken, The ESD discharger was performed in single discharge. For the single discharge time between successive single discharges will keep on one second. It was at least ten single discharges with positive and negative at the same selected pointed. The selected pointed, which was performed with electrostatic discharge, was marked on the red label on the EUT

Indirect applicant of discharge to the EUT

Vertical Coupling Plane (VCP)

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the discharge electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge. It was at least ten singles discharges with positive and negative at the same selected point.

Horizontal Coupling Plane (HCP)

The coupling plane is placed under the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the discharge electrode touching the coupling.

The four faces of the EUT will be performed with electrostatic discharge. It was at least ten single discharges with positive and negative at the same selected pointed.

8.4 TEST RESULT

Model: NS-2040

Temperature: 18°C, Humidity: 55 % RH

Test Point	Air	Contact	Performance	Result
	Discharge	Discharge	Criteria	
НСР		±2, 4KV	A	PASS
VCP		±2, 4KV	A	PASS
CASE		±2, 4KV	A	PASS
SCREWS		±2, 4KV	A	PASS
HDMI		±2, 4KV	A	PASS
RS232		±2, 4KV	A	PASS
eSATA		±2, 4KV	A	PASS
RJ45		±2, 4KV	A	PASS
VGA		±2, 4KV	A	PASS

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

DC IN		±2, 4KV	A	PASS
USB	±2, 4, 8KV	±2, 4KV	A	PASS
EAR	±2, 4, 8KV		A	PASS

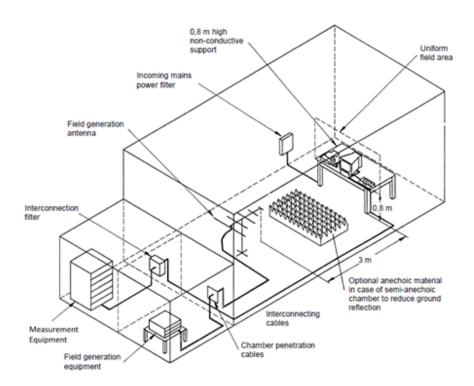
Note 1: Test Points please see the arrows of below photos.

Note 2: Red Dot: Contact / Blue Dot: Air

Final Result:

PASS

Remark:


Photos of test configuration please refer to appendix 1.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

9. RADIATED SUSCEPTIBILITY MEASUREMENT (RS)

9.1 TEST SETUP

9.2 TEST SPECIFICATION

Test is carried out according to EN61000-4-3, and the Test Level is subject to Table 1 of EN 55024. (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

9.3 TEST LEVEL

Item	Test Specification	Unit	Performance Criteria
Radio –Frequency	80~1000	MHz	
Electromagnetic Field	3	V/m (unmodulated, rms)	A
Amplitude Modulated	80	%AM (1KHz)	

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

9.4 TEST PROCEDURE

The EUT and load, which are placed on a wooden table whose height is 0.8 meter above ground, are placed with one coincident with the calibration plane such that the distance from antenna to the EUT is 3 meters.

Both horizontal and vertical polarization of the antenna position and four sides of the EUT are set on measurement. In order to judge the EUT performance, a CCD camera is used to monitor the situation of EUT.

All the scanning conditions are as follows:

The time beaming containing the up to he	in the seaming conditions are as ione ws.				
Condition of Test	Remarks				
1. Field Strength	3 V/m; Level 2				
2. Radiated Signal	AM 80% modulated with 1KHz				
3. Scanning Frequencies	80MHz ~ 1000MHz				
4. Dwell Time	3 seconds				
5. Frequency step size	1%				
6. The rate of swept of frequency	1.5 x 10 ⁻³ decades/s				
7. Antenna Polarity	HORIZONTAL & VERTICAL				
8. The four sides of EUT are tested	FRONT, REAR, RIGHT, LEFT				

9.5 TEST RESULT

Model: NS-2040

Temperature: 18°C, Humidity: 55 % RH

ANT SIDE	3V HORIZONTAL	3V VERTICAL	RESULT
FRONT	A	A	PASS
REAR	A	A	PASS
RIGHT	A	A	PASS
LEFT	A	A	PASS

Note: A means criteria A.

Final Result:

PASS

Remark:


Photos of test configuration please refer to appendix 1.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

10. ELECTRICAL FAST TRANSIENT/BURST (EFT)

10.1 TEST SETUP

10.2 TEST SPECIFICATION

Test is carried out according to EN61000-4-4, and the Test Level is subject to Table 1 of EN 55024 (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

10.3 TEST PROCEDURE

The EUT and load are placed on a ground reference plane and insulated from it by an insulating support $0.1 \text{ m} \pm 0.01 \text{ m}$ thick. The minimum area of the ground reference plane is $1 \text{ m} \times 1 \text{ m}$. It also projected beyond the EUT by at lease 0.1 meter on all sides.

For Input and Output AC power or DC Input and DC Output Power Ports:

The EUT is connected with the power mains through a coupling device that directly couples the EFT interference signal.

Each of the line and nature conductors is impressed with burst noise for 1 minute.

For Protective Earth Port:

The EUT is connected to the power mains through a coupling device that directly couples the EFT interference signal. The protective earth line (PE) is impressed with burst noise for 1 minute.

The length of power cord between the coupling device and the EUT shall be 0.5 m \pm 0.05 m.

For signal Lines and Control Lines Test:

The EFT interference signal is through a coupling clamp device couples to the signal and control lines of the EUT with burst noise for 1 minute.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

10.4 TEST LEVEL

Item	Test Specification	Unit	Performance Criteria	
	AC Input Power Line	±0.5, ±1		
Test Voltage	DC Input Power Line	±0.5	KV (Peak)	В
	Signal & Telecommunication Port	±0.25, ±0.5		
Pulse Rise time & Duration	5/50		Tr/Ts (ns)	
Pulse Repetition	5		Rep. Frequency (KHz)	
Coupling of power line	L, N, PE, L+N, L+PE, N+PE, L+N+PE			

10.5 TEST RESULT

Model: NS-2040

Temperature: 25°C, Humidity: 48 % RH

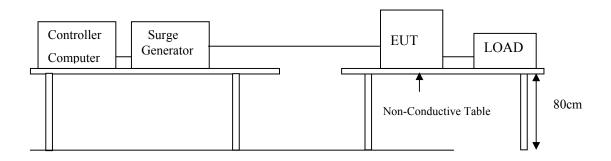
Power Line							
TEST VOLTAGE	L	N	PE	L+N	L+PE	N+PE	L+N+PE
±1KV	A	A	A	A	A	A	A

Note: A means criteria A.

Final Result:

PASS

Remark:


Photos of test configuration please refer to appendix 1.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

11. SURGE

11.1 TEST SETUP

11.2 TEST SPECIFICATION

Test is carried out according to EN61000-4-5, and the Test Level is subject to Table 1 of EN 55024 (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

11.3 TEST LEVEL

Item	Test Specification	Unit	Performance Criteria
DC Input and DC Output Power Ports			
Surge	1.2/50(8/20)	Tr/Ts (µs)	В
Line to Ground	±0.5	KV	
Line to Line	±0.5	KV	
Polarity	POSITIVE / NEGATIVE		

Item	Test Specification	Unit	Performance Criteria
AC Input and AC Output Power Ports			
Surge	1.2/50(8/20)	Tr/Ts (µs)	В
Line to Ground	±2	KV	
Line to Line	±1	KV	
Polarity POSITIVE / NEGATIVE			
Phase shifting in a range between 0°to 360°			

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

Item	Test Specification	Unit	Performance Criteria
Signal & Telecommunication Port			
Surge	10/700	Tr/Ts (µs)	С
Line to Ground	±1	KV	
Line to Ground	±4	KV	
Polarity	POSITIVE / NEGATIVE		

For ports where primary protection is intended, surges are applied at voltages up to 4kV with the primary protectors fitted. Otherwise the 1kV test level is applied without primary protection in place.

11.4 TEST PROCEDURE

The EUT and its load are placed on a table which is 0.8 meter height. The length of power cord between the coupling device and the EUT shall be 2 meters or less.

For Input and Output AC Power or DC Input and DC Output Power Ports:

The EUT is connected to the power mains through a coupling device that directly couples the Surge interference signal.

The Surge noise shall be applied synchronized to the voltage phase at 0°, 90°, 180°, 270° and the peak value of the AC voltage wave. (5 Positive and 5 Negative)

Each of line-earth and line-line is impressed with a sequence of five surge voltages with interval of 1 minute

11.5 TEST RESULT

Model: NS-2040

Temperature: 18° C, Humidity: 55° % RH

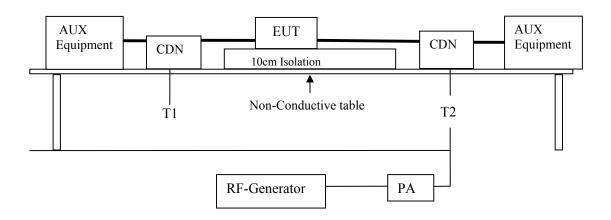
AC Power Port

Environmental Phenomena	Test Specification	Units	Performance Criteria
Line to Line	±1	KV (Charge Voltage)	A
Line to Earth	±2	KV (Charge Voltage)	A

Final Result:

PASS

Remark:


Photos of test configuration please refer to appendix 1.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

12. IMMUNITY TEST TO CS CONDUCTED DISTURBANCE (CS)

12.1 TEST SETUP

12.2 TEST SPECIFICATION

Test is carried out according to EN61000-4-6, and the Test Level is subject to Table 1 of EN 55024. (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

12.3 TEST LEVEL

Item	Test Specification	Unit	Performance Criteria			
Ports for Signal Lines						
Radio-Frequency	0.15 ~ 80	MHz	A			
Common Mode	3	V (rms, Unmodulated)				
Amplitude Modulated	80	%AM (1KHz)				
	150	Source Impedance				
Ac Input and AC Output and DC Input	Ac Input and AC Output and DC Input and DC output Ports and Functional Earth Ports					
Radio-Frequency	0.15 ~ 80	MHz				
Common Mode	3	V (rms, Unmodulated)	A			
Amplitude Modulated	Amplitude Modulated 80					
	150	Source Impedance				

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

12.4 TEST PROCEDURE

The EUT are placed on a table which is 0.8 meter height and a ground reference plane on the table, the EUT are placed upon table and use 10cm insulation between the EUT and ground reference plane.

For AC Input and AC Output Power or DC Input and DC Output Power Ports

The EUT is connected to the power mains through a coupling and decoupling networks for

Power supply lines. It also directly couples the disturbance signal into EUT.

Use CDN-M2 for two wires or CDN-M3 for three wires.

For Signal Lines and Control Lines Test:

The disturbance signal is through a coupling and decoupling networks (CDN) or EM-clamp which is to couple the signal and control lines of the EUT.

All scanning frequencies conditions are as following:

Condition of Test	Remarks
EN61000-4-6	
1. Field Strength	3 V; Level 2
2. Radiated Signal	AM 80% modulated with 1KHz
3. Scanning Frequencies	0.15MHz ~ 80MHz
4. Dwell Time	3 seconds
5. Frequency step size Δf	1%
6. The rate of swept of frequency	1.5×10^{-3} decades/s

12.5 TEST RESULT

Model: NS-2040

Temperature: 18° C, Humidity: 55 % RH

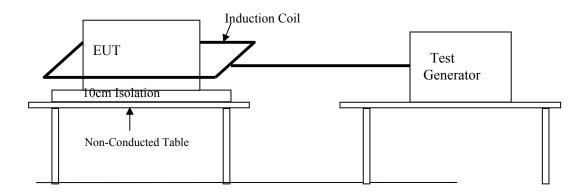
Power & Signal

TEST Specification	Unit	Performance Criteria	
0.15 - 80	MHz		
3	V	A	
80	% AM (1KHz)		

Final Result:

PASS

Remark:


Photos of test configuration please refer to appendix 1.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

13. POWER FREQUENCY MAGNETIC FIELD (MAGNETIC)

13.1 TEST SETUP

13.2 TEST SPECIFICATION

Test is carried out according to EN61000-4-8, and the Test Level is subject to Table 1 of EN 55024 (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

13.3 TEST LEVEL

Item	Test Specification	Unit	Performance Criteria	
Power-Frequency	50	Hz	A	
Magnetic Field	1	A/m		

13.4 TEST PROCEDURE

The EUT and its load are placed on a table that is 0.8 meter above the metal ground plane dimension is at least 1 meter x 1 meter. The test magnetic field shall be placed at least than 3 meter distance from the induction coil.

The test magnetic field shall be applied by the immersion method to the EUT. The induction coil shall be rotated by 90° in order to expose the EUT to the test field with different orientation (X, Y, Z orientation).

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

13.5 TEST RESULT

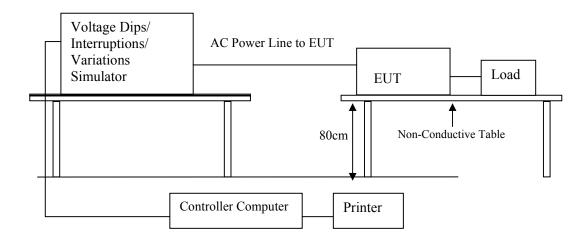
Model: NS-2040

Temperature: 18° C, Humidity: 55 % RH

Environmental Phenomena	Lest Specification		Performance Criteria
Magnetic Field	1	A/m	A

Final Result:

PASS


Remark:

Photos of test configuration please refer to appendix 1.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

14. VOLTAGE DIPS AND INTERRUPTION MEASUREMENT

14.1 TEST SETUP

14.2 TEST SPECIFICATION

Test is carried out according to EN61000-4-11, and the Test Level is subject to Table 1 of EN 55024. (Please refer to Page 4 for dated references which are related to the standard as mentioned above)

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

14.3 TEST LEVEL

Class ^a	Test level and durations for voltage dips							
Class 1	C	Case-by-case according to the equipment requirements						
Class 2	0 % during 1/2 cycle	0 % during 1 cycle	70 % during 25/30° cycles					
Class 3	0 % during 1/2 cycle	0 % during 1 cycle			80 % during 250/300° cycles			
Class X ^b	X	X	X	X	X			

a: Classes as per EN61000-2-4.

c: "25/30 cycles" means "25 cycles for 50 Hz test" and "30 cycles for 60 Hz tet".

Class ^a	Test level and durations for short interruptions (t _s) (50Hz / 60Hz)
Class 1	Case-by-case according to the equipment requirements
Class 2	0 % during 250/300 ^c cycles
Class 3	0 % during 250/300 ^c cycles
Class X ^b	X

a: Classes as per EN61000-2-4.

14.4 TEST PROCEDURE

The EUT and its load are placed on a wooden table which is 0.8 meter above a metal ground plane which dimension is 1 meter x 1 meter, the thickness is 0.65mm. It projected beyond the EUT by at least 0.1 meter on all sides. The power cord shall be used the shortest power cord as specified by the manufacturer.

For Voltage Dips / Interruption Test:

The EUT is connected to the power mains through a coupling device that directly couples to the Voltage Dips and Interruption Generator.

The EUT shall be tested for 30% voltage dips of supplied voltage and duration time is 10ms, for 60% voltage dips of supplied voltage and duration time is 100ms with a sequence of three voltage dips with intervals of 10 seconds, and for 95% voltage interruption of supplied voltage and the duration time is 5000ms with a sequence of three voltage interruptions with intervals of 10 seconds.

Voltage phase shifting are shall occur at0°, 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, 315 ° of the voltage.

b: To be defined by product committee. For equipment connected directly or indirectly to the public network, the levels must not be less severe than Class 2.

b: To be defined by product committee. For equipment connected directly or indirectly to the public network, the levels must not be less severe than Class 2.

c: "250/300 cycles" means "250 cycles for 50 Hz test" and "300 cycles for 60 Hz test".

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

14.5 TEST RESULT

Model: NS-2040

Temperature: <u>18°C</u>, Humidity: <u>55</u> % RH

W. L. D.	Test Level % U _T	Reduction (%)	Duration	Performance Criteria
Voltage Dips	<5	>95	0.5 (periods)	В
	70	30	25 (periods)	C
Voltage	Test Level % U _T	Reduction (%)	Duration	Performance Criteria
Interruption s	<5	>95	250(periods) 5000ms	С

Final Result:

PASS

Remark: The EUT was influenced during the test, but it returned to normal after the test.

Photos of test configuration please refer to appendix 1.

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

15. PERFORMANCE CRITERIA

- **A.** During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended
- B. After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.
- C. During and after testing, a temporary loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost

Date of Issue: Jan. 08, 2018 Report No.: E442505-02

16. EMC MODIFICATION & ESTIMATED MEASUREMENT UNCERTAINTY

16.1 EMC MODIFICATION

No additional EMC solution was made during the Compliance testing.

16.2 ESTIMATED MEASUREMENT UNCERTAINTY

The estimated measurement uncertainty is calculated in accordance with CISPR16-4-2, the total uncertainty for this test is listed as below:

Uncertainty of Conducted Emission Measurement (9KHz~30MHz)

Contribution	Probability Distribution	9KHz – 30MHz
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	Normal (k=2)	±3.2 dB

Uncertainty of Conducted Emission Measurement (150KHz~30MHz) ISN T8

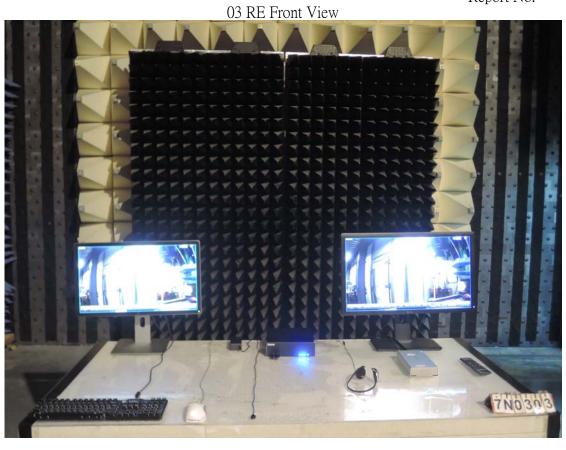
Contribution	Probability Distribution	150KHz – 30MHz
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	normal (k=2)	± 3.9 dB

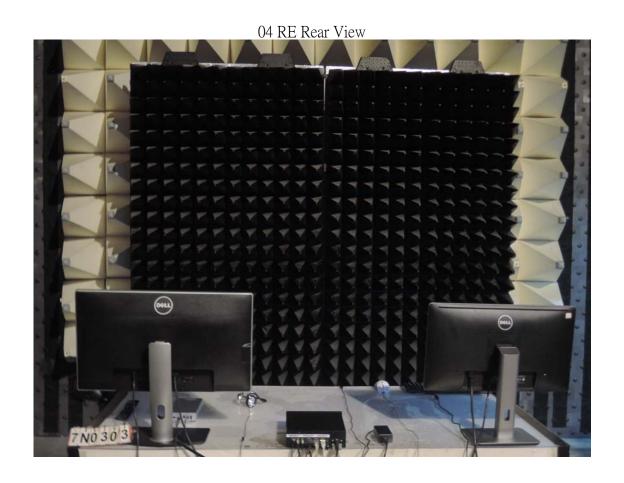
Uncertainty of Radiated Emission Measurement (30MHz~1GHz)

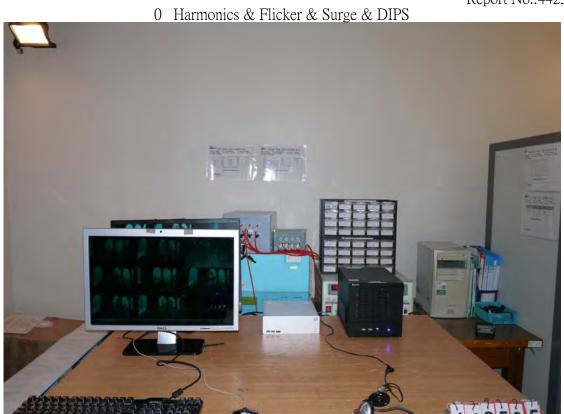
Contribution	Probability Distribution	30MHz~1GHz
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	Normal (k=2)	±2.7 dB

Uncertainty of Radiated Emission Measurement (1GHz~18GHz)

Contribution	Probability Distribution	1GHz~18GHz
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	Normal (k=2)	±4.2 dB

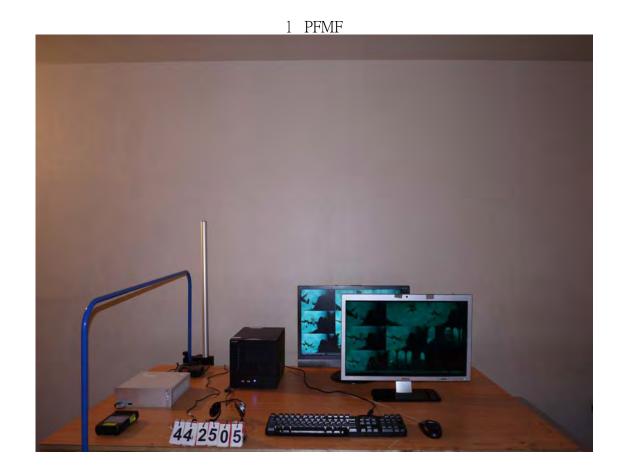

Appendix 1 PHOTOS OF TEST CONFIGURATION

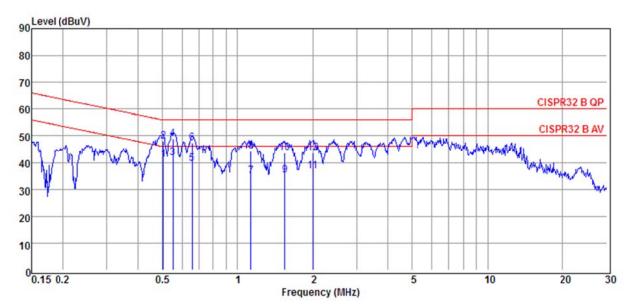

Report No.



Report No.






Appendix 2 TEST DATA

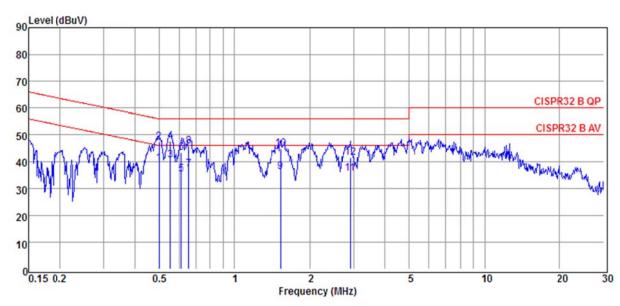
Date:2018-1-2

Site : GCC_CE_01 Regulations : CISPR32 B QP

RBW: 9 KHz VBW: 300 KHz SWT: Auto Phase: LINE EUT: Storage Server Model: NS-2040

Voltage: 230Vac 50Hz Memo:

F	Freq	Meter	System	Cable	LISN	Real Level	Lim i t	Margin	Remark
		Level	Factor	Loss	Factor		Line		
N	ИHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.50	20.89	20.17	20.15	0.02	41.06	46.00	-4.94	Average
2	0.50	27.82	20.17	20.15	0.02	47.99	56.00	-8.01	QP
3	0.55	21.50	20.18	20.16	0.02	41.68	46.00	-4.32	Average
4	0.55	28.79	20.18	20.16	0.02	48.97	56.00	-7.03	QP
5	0.66	19.33	20.20	20.17	0.03	39.53	46.00	-6.47	Average
6	0.66	27.00	20.20	20.17	0.03	47.20	56.00	-8.80	QP
7	1.13	14.77	20.23	20.20	0.03	35.00	46.00	-11.00	Average
8	1.13	24.03	20.23	20.20	0.03	44.26	56.00	-11.74	QP
9	1.55	15.05	20.26	20.22	0.04	35.31	46.00	-10.69	Average
10	1.55	23.23	20.26	20.22	0.04	43.49	56.00	-12.51	QP
11	2.00	16.52	20.27	20.23	0.04	36.79	46.00	-9.21	Average
12	2.00	23.46	20.27	20.23	0.04	43.73	56.00	-12.27	QP


System Factor = Cable Loss + LISN Factor Real Level = Meter Level + System Factor Margin = Real Level - Limit Line

Date:2018-1-2

Site : GCC_CE_01 Regulations : CISPR32 B QP

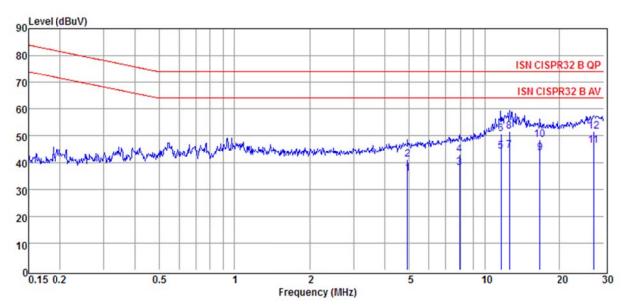
RBW: 9 KHz VBW: 300 KHz SWT: Auto Phase: NEUTRAL EUT: Storage Server Model: NS-2040

Voltage: 230Vac 50Hz Memo:

Freq		Meter	System	Cable	LISN	Real Level	Lim i t	Margin	Remark
		Level	Factor	Loss	Factor		Line		
MHz		dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.50	19.13	20.18	20.15	0.03	39.31	46.01	-6.70	Average
2	0.50	27.29	20.18	20.15	0.03	47.47	56.01	-8.54	QP
3	0.55	20.42	20.19	20.16	0.03	40.61	46.00	-5.39	Average
4	0.55	27.36	20.19	20.16	0.03	47.55	56.00	-8.45	QP
5	0.61	15.00	20.19	20.16	0.03	35.19	46.00	-10.81	Average
6	0.61	23.20	20.19	20.16	0.03	43.39	56.00	-12.61	QP
7	0.65	16.94	20.21	20.17	0.04	37.15	46.00	-8.85	Average
8	0.65	25.49	20.21	20.17	0.04	45.70	56.00	-10.30	QP
9	1.53	15.77	20.26	20.21	0.05	36.03	46.00	-9.97	Average
10	1.53	24.56	20.26	20.21	0.05	44.82	56.00	-11.18	QP
11	2.91	15.25	20.35	20.27	0.08	35.60	46.00	-10.40	Average
12	2.91	20.92	20.35	20.27	0.08	41.27	56.00	-14.73	QP

System Factor = Cable Loss + LISN Factor Real Level = Meter Level + System Factor Margin = Real Level - Limit Line

Date:2018-1-2


Site : GCC_CE_01 Regulations : ISN CISPR32 B QP

RBW: 9 KHz VBW: 300 KHz SWT: Auto

EUT : Storage Server Model : NS-2040

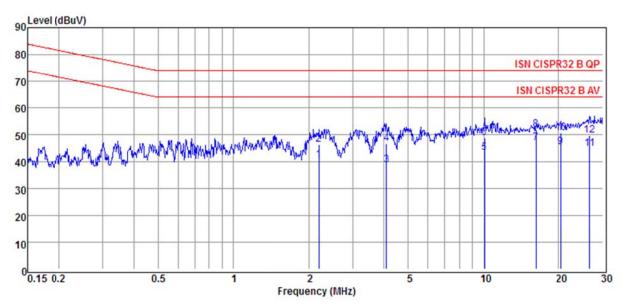
 $Mode: LAN1\ Link\ 1G \qquad \qquad Temp/Humidity: 20^{\circ}C\ \ /\ 66\%$

Voltage: 230Vac 50Hz Memo:

Freq		Meter	System	Cable	ISN Factor	Real	Limit	Margin	Remark
		Level	Factor	Loss		Level	Line		
N	1Hz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	4.93	6.13	29.77	20.09	9.68	35.90	64.00	-28.10	Average
2	4.93	11.44	29.77	20.09	9.68	41.21	74.00	-32.79	QP
3	7.94	8.22	29.84	20.12	9.72	38.06	64.00	-25.94	Average
4	7.94	13.23	29.84	20.12	9.72	43.07	74.00	-30.93	QP
5	11.64	14.27	29.91	20.14	9.77	44.18	64.00	-19.82	Average
6	11.64	20.82	29.91	20.14	9.77	50.73	74.00	-23.27	QP
7	12.60	14.66	29.93	20.14	9.79	44.59	64.00	-19.41	Average
8	12.60	21.76	29.93	20.14	9.79	51.69	74.00	-22.31	QP
9	16.67	13.49	30.06	20.16	9.90	43.55	64.00	-20.45	Average
10	16.67	18.61	30.06	20.16	9.90	48.67	74.00	-25.33	QP
11	27.28	15.85	30.54	20.20	10.34	46.39	64.00	-17.61	Average
12	27.28	21.13	30.54	20.20	10.34	51.67	74.00	-22.33	QP

System Factor = Cable Loss + ISN Factor Real Level = Meter Level + System Factor Margin = Real Level - Limit Line

Date:2018-1-2


Site : GCC_CE_01 Regulations : ISN CISPR32 B QP

RBW: 9 KHz VBW: 300 KHz SWT: Auto

EUT : Storage Server Model : NS-2040

 $Mode: LAN2\ Link\ 1G \\ Temp/Humidity: 20^{\circ}C\ \ /\ 66\%$

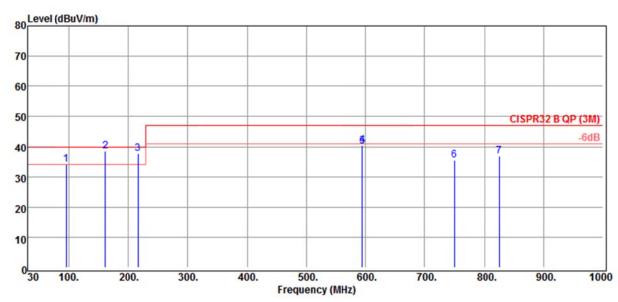
Voltage: 230Vac 50Hz Memo:

Freq		Meter	System	Cable	ISN Factor	Real	Limit	Margin	Remark
		Level	Factor	Loss		Level	Line		
N	ИHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	2.19	10.81	29.77	20.06	9.71	40.58	64.00	-23.42	Average
2	2.19	16.73	29.77	20.06	9.71	46.50	74.00	-27.50	QP
3	4.09	8.89	29.77	20.08	9.69	38.66	64.00	-25.34	Average
4	4.09	16.91	29.77	20.08	9.69	46.68	74.00	-27.32	QP
5	10.08	13.54	29.87	20.13	9.74	43.41	64.00	-20.59	Average
6	10.08	19.06	29.87	20.13	9.74	48.93	74.00	-25.07	QP
7	16.23	16.99	30.04	20.16	9.88	47.03	64.00	-16.97	Average
8	16.23	22.00	30.04	20.16	9.88	52.04	74.00	-21.96	QP
9	20.38	15.18	30.22	20.18	10.04	45.40	64.00	-18.60	Average
10	20.38	20.67	30.22	20.18	10.04	50.89	74.00	-23.11	QP
11	26.58	14.34	30.51	20.20	10.31	44.85	64.00	-19.15	Average
12	26.58	19.29	30.51	20.20	10.31	49.80	74.00	-24.20	QP

System Factor = Cable Loss + ISN Factor Real Level = Meter Level + System Factor Margin = Real Level - Limit Line

Date:2017-12-25

Site : GCC_RE Regulations : CISPR32 B QP (3M)


RBW: 120 KHz VBW: 300 KHz SWT: Polarity: HORIZONTAL

Auto

EUT : Storage Server Model : NS-2040

Mode : Recoding Temp/Humidity : 24° C / 55%

Voltage: 230Vac 50Hz Memo:

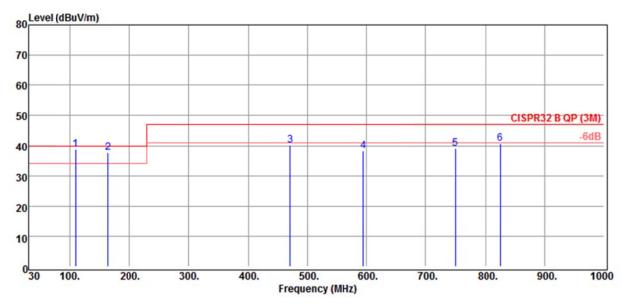
Freq		Meter Level	System Factor	Cable Loss	Antenna Factor	Preamp Gain	Real Level	Limit Line	Marg in	Rema rk
	MHz	dBuV	dB/m	dB	dB/m	dB	dBuV/	dBuV/	dB	
							m	m		
1	95.96	46.51	-12.53	0.91	15.51	28.95	33.98	40.00	-6.02	Peak
2	160.95	47.38	-8.78	1.22	19.03	29.03	38.60	40.00	-1.40	Peak
3	216.24	47.74	-10.00	1.45	17.59	29.04	37.74	40.00	-2.26	Peak
4	594.54	40.02	0.44	2.68	25.35	27.59	40.46	47.00	-6.54	Peak
5	594.54	39.79	0.44	2.68	25.35	27.59	40.23	47.00	-6.77	QP
6	749.74	31.59	3.81	3.05	27.40	26.64	35.40	47.00	-11.60	QP
7	825.40	31.59	5.26	3.25	28.20	26.19	36.85	47.00	-10.15	Peak

System Factor = Cable Loss + Antenna Factor - Preamp Gain

Real Level = Meter Level + System Factor

Date:2018-1-2

Site: GCC_RE_01 Regulations: CISPR32 B QP (3M)


RBW: 120 KHz VBW: 300 KHz SWT: Polarity: VERTICAL

Auto

EUT : Storage Server Model :

Mode : Recoding Temp/Humidity : 24°C / 55%

Voltage: 230Vac 50Hz Memo:

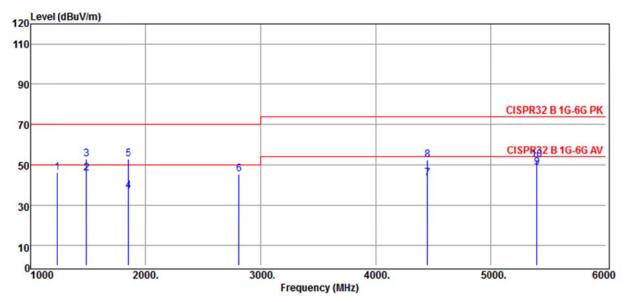
	Freq	Meter	System	Cable	Antenna	Preamp	Real	Limit	Margin	Remark
		Level	Factor	Loss	Factor	Gain	Level	Line		
	MHz	dBuV	dB/m	dB	dB/m	dB	dBuV/	dBuV/	dB	
							m	m		
1	109.54	47.78	-9.02	0.97	18.99	28.98	38.76	40.00	-1.24	QP
2	163.86	46.48	-8.96	1.24	18.83	29.03	37.52	40.00	-2.48	QP
3	471.35	42.40	-2.33	2.35	23.68	28.36	40.07	47.00	-6.93	QP
4	594.54	37.89	0.44	2.68	25.35	27.59	38.33	47.00	-8.67	QP
5	749.74	35.16	3.81	3.05	27.40	26.64	38.97	47.00	-8.03	QP
6	825.40	35.54	5.26	3.25	28.20	26.19	40.80	47.00	-6.20	QP

System Factor = Cable Loss + Antenna Factor - Preamp Gain

Real Level = Meter Level + System Factor

Date:2017-12-29

Site: GCC_RE_01 Regulations: CISPR32 B 1G-6G PK


RBW: 1000 KHz VBW: 1000 KHz SWT: Polarity: HORIZONTAL

Auto

EUT : Storage Server Model : NS-2040

Mode : Recoding Temp/Humidity : 24° C / 55%

Voltage: 230Vac 50Hz Memo:

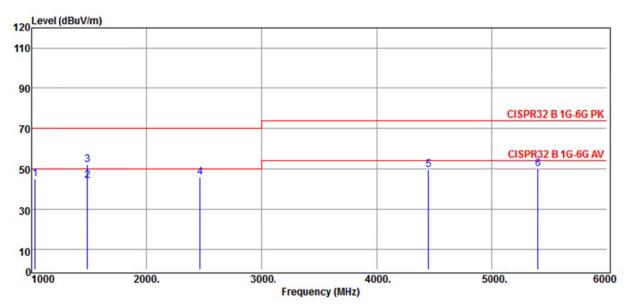
	Freq	Meter	System	Cable	Antenna	Preamp	Real	Limit	Margin	Remark
		Level	Factor	Loss	Factor	Gain	Level	Line		
	MHz	dBuV	dB/m	dB	dB/m	dB	dBuV/	dBuV/	dB	
							m	m		
1	1235.00	61.69	-15.77	3.09	28.19	47.05	45.92	70.00	-24.08	Peak
2	1485.00	61.11	-15.42	3.39	28.29	47.10	45.69	50.00	-4.31	Average
3	1485.00	68.34	-15.42	3.39	28.29	47.10	52.92	70.00	-17.08	Peak
4	1850.00	49.37	-12.33	3.81	30.75	46.89	37.04	50.00	-12.96	Average
5	1850.00	65.25	-12.33	3.81	30.75	46.89	52.92	70.00	-17.08	Peak
6	2810.00	55.51	-10.35	3.65	32.82	46.82	45.16	70.00	-24.84	Peak
7	4455.00	49.89	-6.53	6.01	34.35	46.89	43.36	54.00	-10.64	Average
8	4455.00	58.81	-6.53	6.01	34.35	46.89	52.28	74.00	-21.72	Peak
9	5400.00	54.08	-5.39	6.71	34.62	46.72	48.69	54.00	-5.31	Average
10	5400.00	57.53	-5.39	6.71	34.62	46.72	52.14	74.00	-21.86	Peak

 $System\ Factor = Cable\ Loss + Antenna\ Factor\ -\ Preamp\ Gain$

Real Level = Meter Level + System Factor

Date:2017-12-29

Site: GCC_RE_01 Regulations: CISPR32 B 1G-6G PK


RBW: 1000 KHz VBW: 1000 KHz SWT: Polarity: VERTICAL

Auto

EUT : Storage Server Model : NS-2040

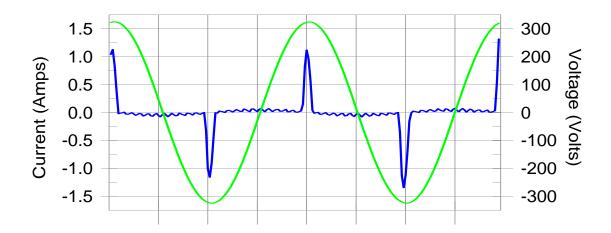
Mode : Recoding Temp/Humidity : 24° C / 55%

Voltage: 230Vac 50Hz Memo:

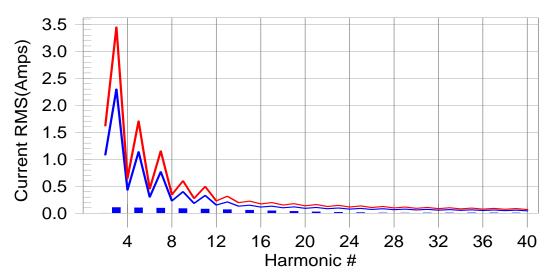
	Freq	Meter	System	Cable	Antenna	Preamp	Real	Limit	Margin	Remark
		Level	Factor	Loss	Factor	Gain	Level	Line		
	MHz	dBuV	dB/m	dB	dB/m	dB	dBuV/	dBuV/	dB	
							m	m		
1	1030.00	60.95	-16.04	2.86	28.11	47.01	44.91	70.00	-25.09	Peak
2	1485.00	59.25	-15.42	3.39	28.29	47.10	43.83	50.00	-6.17	Average
3	1485.00	67.38	-15.42	3.39	28.29	47.10	51.96	70.00	-18.04	Peak
4	2465.00	56.10	-10.28	3.79	32.64	46.71	45.82	70.00	-24.18	Peak
5	4455.00	55.80	-6.53	6.01	34.35	46.89	49.27	74.00	-24.73	Peak
6	5400.00	55.17	-5.39	6.71	34.62	46.72	49.78	74.00	-24.22	Peak

 $System\ Factor = Cable\ Loss + Antenna\ Factor - Preamp\ Gain$

Real Level = Meter Level + System Factor


Harmonics – Class-A per Ed. 3.2 (2014)(Run time)

EUT: NS-2040 Tested by: Ken Test category: Class-A per Ed. 3.2 (2014) (European limits) Test Margin: 100 Test date: 2017/12/27


Test date: 2017/12/27 Comment: 05/09 Customer: 442505-02

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line European Limits

Test result: Pass Worst harmonic was #15 with 36.64% of the limit.

Current Test Result Summary (Run time)

Tested by: Ken **EUT: NS-2040** Test category: Class-A per Ed. 3.2 (2014) (European limits) Test Margin: 100

Test date: 2017/12/27

Test duration (min): 15 Data file name: H-000070.cts_data

Comment: 05/09 Customer: 442505-02

Test Result: Pass

ss Source qualification: Normal I-THD(%): 211.90 POHC(A): 0.04 POHC Limit(A): 0.251 THC(A): 0.22 POHC(A): 0.040

Highest parameter values during test:

V_RMS (Volts): 229.45

I_Peak (Amps): 1.528

I_Fund (Amps): 0.116 Frequency(Hz): 50.00 I_RMS (Amps): 0.275 Crest Factor: 6.442 Power (Watts): 25.3 Power Factor: 0.410

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.001	1.080	0.0	0.002	1.620	0.14	Pass
3	0.097	2.300	4.2	0.108	3.450	3.13	Pass
4	0.001	0.430	0.0	0.002	0.645	0.32	Pass
	0.093	1.140	8.2	0.103	1.710	6.04	Pass
5 6	0.001	0.300	0.0	0.002	0.450	0.42	Pass
7	0.088	0.770	11.4	0.097	1.155	8.39	Pass
8	0.001	0.230	0.0	0.002	0.345	0.47	Pass
9	0.081	0.400	20.3	0.089	0.600	14.81	Pass
10	0.001	0.184	0.0	0.001	0.276	0.49	Pass
11	0.073	0.330	22.2	0.080	0.495	16.08	Pass
12	0.001	0.153	0.0	0.001	0.230	0.45	Pass
13	0.064	0.210	30.6	0.069	0.315	22.02	Pass
14	0.000	0.131	0.0	0.001	0.197	0.39	Pass
15	0.055	0.150	36.6	0.059	0.225	26.08	Pass
16	0.000	0.115	0.0	0.001	0.173	0.32	Pass
17	0.045	0.132	34.5	0.048	0.199	24.08	Pass
18	0.000	0.102	0.0	0.001	0.153	0.37	Pass
19	0.036	0.118	30.6	0.038	0.178	21.09	Pass
20	0.000	0.092	0.0	0.001	0.138	0.44	Pass
21	0.028	0.107	25.7	0.028	0.161	17.40	Pass
22	0.000	0.084	0.0	0.001	0.125	0.54	Pass
23	0.020	0.098	20.2	0.020	0.147	13.80	Pass
24	0.000	0.077	0.0	0.001	0.115	0.66	Pass
25	0.013	0.090	14.4	0.014	0.135	10.07	Pass
26	0.000	0.071	0.0	0.001	0.106	0.70	Pass
27	0.008	0.083	9.2	0.008	0.125	6.63	Pass
28	0.000	0.066	0.0	0.001	0.099	0.78	Pass
29	0.005	0.078	6.2	0.005	0.116	4.72	Pass
30	0.000	0.061	0.0	0.001	0.092	0.76	Pass
31	0.005	0.073	6.9	0.007	0.109	6.07	Pass
32	0.000	0.058	0.0	0.001	0.086	0.71	Pass
33	0.006	0.068	9.4	0.008	0.102	7.79	Pass
34	0.000	0.054	0.0	0.000	0.081	0.56	Pass
35	0.007	0.064	11.4	0.009	0.096	8.93	Pass
36	0.000	0.051	0.0	0.000	0.077	0.42	Pass
37	0.008	0.061	12.5	0.008	0.091	9.22	Pass
38	0.000	0.048	0.0	0.000	0.073	0.54	Pass
39	0.007	0.058	12.4	0.008	0.087	8.62	Pass
40	0.000	0.046	0.0	0.000	0.069	0.66	Pass

Voltage Source Verification Data (Run time)

EUT: NS-2040 Tested by: Ken Test category: Class-A per Ed. 3.2 (2014) (European limits) Test Margin: 100

Test date: 2017/12/27

Test duration (min): 15 Data file name: H-000070.cts_data

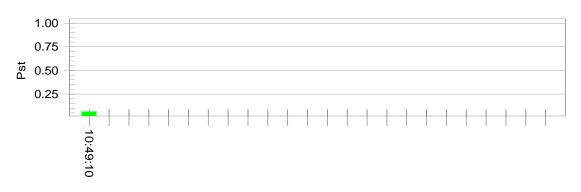
Comment: 05/09 Customer: 442505-02

Test Result: Pass Source qualification: Normal

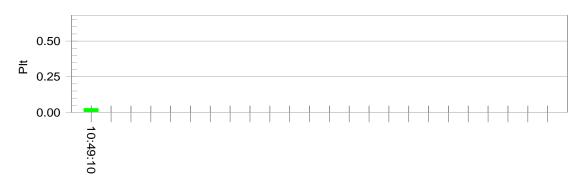
Highest parameter values during test:
Voltage (Vrms): 229.45
I_Peak (Amps): 1.528
I_Fund (Amps): 0.116
Power (Watts): 25.3 Frequency(Hz): 50.00 I_RMS (Amps): 0.275 Crest Factor: 6.442 Power Factor: 0.410

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.112	0.459	24.49	ОК
3	0.458	2.065	22.20	OK
4	0.022	0.459	4.82	OK
5	0.042	0.918	4.61	OK
4 5 6	0.017	0.459	3.64	OK
7	0.045	0.688	6.48	OK
8	0.014	0.459	3.12	OK
9	0.019	0.459	4.20	OK
10	0.015	0.459	3.19	OK
11	0.042	0.229	18.13	OK
12	0.015	0.229	6.33	OK
13	0.035	0.229	15.35	OK
14	0.012	0.229	5.38	OK
15	0.037	0.229	16.25	OK
16	0.013	0.229	5.51	OK
17	0.029	0.229	12.68	OK
18	0.020	0.229	8.70	OK
19	0.032	0.229	14.13	OK
20	0.014	0.229	6.31	OK
21	0.022	0.229	9.61	OK
22	800.0	0.229	3.64	OK
23	0.024	0.229	10.49	OK
24	0.007	0.229	3.18	OK
25	0.012	0.229	5.42	OK
26	0.011	0.229	4.81	OK
27	0.016	0.229	7.03	OK
28	0.012	0.229	5.02	OK
29	0.010	0.229	4.37	OK
30	0.014	0.229	5.95	OK
31	0.012	0.229	5.35	OK
32	0.010	0.229	4.39	OK
33	0.012	0.229	5.35	OK
34	0.005	0.229	2.38	OK
35	0.011	0.229	4.99	OK
36	0.007	0.229	2.91	oĸ
37	0.017	0.229	7.29	OK
38	0.007	0.229	3.02	oĸ
39	0.012	0.229	5.23	oĸ
40	0.012	0.229	5.10	ок

Flicker Test Summary per EN/IEC61000-3-3 (Run time)


EUT: NS-2040 Tested by: Ken Test category: All parameters (European limits) Test Margin: 100 Test date: 2017/12/27

Test date: 2017/12/27 Comment: 05/09 Customer: 442505-02


Test Result: Pass Status: Test Completed

Pst_i and limit line

European Limits

Plt and limit line

Parameter values recorded during the test:

vrms at the end of test (volt):	229.39			
Highest dt (%):	0.00	Test limit (%):	3.30	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.028	Test limit:	0.650	Pass